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1. PHYSICAL STATEMENT OF THE PROBLEM 

The objective of the article is to explain and model the anomalously slow process sometimes observed in experiments 

where a vertical liquid film thins out in the gravitational field. We consider the case in which it is known for certain that 
equilibrium of the gravitational and capillary forces is impossible. For example, a film of ordinary water with an average 
thickness H = 0.01 cm formed on a square frame of side L = 1 cm sometimes has a "lifetime" of the order of a few seconds. 

However, simple calculations show that a vertical layer of pure water in the earth's gravitational field (g = 981 cm/sec2), 

starting from the rest state, attains zero thickness in a few hundredths of a second. The same result is confirmed by simple 
estimates. Assuming that the density, kinematic viscosity, and coefficient of surface tension of water are equal to p = 1 g/cm 3, 

= 0.01 cm2/sec, and ~ = 72 g/see 2, respectively, we see at once that the ratios of the capillary and viscous forces to the 

force of gravity are extremely small: 

oH - -  7 �9 1 0  - 4  v 3 �9 1 0  - 4 .  
pgL 3 ' gl/2L3/2 

Consequently, the characteristic thinning time of a free film is determined primarily by the force of gravity, which gives 
(L/g) 1/2 - 0.03 sec. 

Attempts to take into account the short-lived forces of interaction between the interphase surfaces of the f i l l  have failed 

to give any appreciable hacrease in the life of the f i l l .  Moreover, the strongest steric interactions [1] typical of long-molecular 
polymer liquids have little bearing on water. The sum total of these considerations has motivated us to study the effect of 

surface-active agents (surfactants), which are always present in a liquid as contaminants of one kind or another. An excess 
concentration of surfactants lowers the surface tension of the interphase boundary; according to the principle of minimum free 

energy, therefore, surfactants are capable of readily adsorbing liquid, even from the surrounding air. 
We call attention to the following mechanism of the Le Chatelier-Brown type, which is capable of significantly 

extending the life of a film. In the initial stage of the thinning process gravity draws a liquid containing dissolved surfactants 

downward on a free boundary. This creates a surface-tension gradient in the upward direction, which induces Marangoni 
reactive flow. We emphasize that the incompressibility of the liquid keeps the volume concentration of surfactants almost 
constant, whereas the surface concentration of surfactants depends mainly on the dilatation of the free boundary. If the initial 

concentration exceeds a certain critical value, the film acquires an oscillatory flow regime, which decays with time. The 

thinning rate is now determined by the surfactant diffusion process, which eradicates the surface-tension gradient and causes 
the film to break. In support of this conjecture we add that the rupture of liquid films is usually observed just before the motion 
of the liquid fades altogether. 

We note that the effect of body forces diminishes as the fdm thins out, whereas the Marangoni surface forces are 
practically independent of the film thickness. Consequently, even a small concentration of surfactants is capable of preventing 

instantaneous rupture of the capillary surface. The critical surfactant concentration for the above example is such that the 
surface tension of water decreases by no more than 2 %. 
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The actual lifetime of the f i l l  is determined by the stability of the motion of the liquid with free boundaries relative 
to external disturbances, so that the surfactant diffusion rate alone makes the upper limit of existence of the film too high. In 

fact, even if we assume that the coefficient of  surface diffusion ~5 is improbably large, say of the order of  the kinetic viscosity 
of water p, the characteristic relaxation time to a constant surfactant concentration is L2/di - 100 sec. 

Investigations of the influence of surfactants on the thinning of a thin liquid f i l l  formed between two converging drops 

have been reported in several papers [1-3], where the Reynolds equations of wetting theory, which do not contain inertial or 

gravitational forces and are therefore inapplicable to free vertical films, are used as the hydrodynamic equations. Here we 
propose to model the thinning phenomenon on the basis of approximate equations derived for various applications [4-6]. 

2. M A T H E M A T I C A L  M O D E L  

We assume that the motion of a liquid in a vertical layer is symmetrical about its centroidal plane F. Let h(x, t), v(x, t), 

and "r(x, t) be the thickness of  the film, the average velocity of the liquid, and the surface concentration of surfactants, all of 

which are functions of  the position x on F and the time t. We assume that the surface tension of the "contaminated" free 
boundary is a - cry (~ is a positive coefficient). In particular, the surface tension of a "clean" free boundary coincides with 

~r. In the thin-layer approximation the equations of conservation of mass and momentum have the form [4-6] 

ah 
- -  + V �9 (hv)  = 0 on F; ( 2 . 1 )  
0t 

ph + v .  Vv = p h g +  V .  Ton F, (2.2) 

where V denotes the planar gradient, and T is the film stress tensor, which has two components T~ and T~.  

The nonequilibrium component T~ is related to the dynamic viscosity ~ = o~' according to the equation [ 4 - 6 ]  

T = 2ph[(V �9 v)G + (Vv)~.~l (2.3) 

(G is the metric tensor of the plane F). If  the phenomenological approach is taken [4, 5], the equilibrium component Tg must 

be an isotropic tensor 7<3, where r is the effective tension of the f i l l .  When the interphase surfaces do not interact, we can 

set z = 2(a - crY). Although this approach leads to a correct formulation of the problem suitable for describing, for example, 

the dynamics of  a closed shell, in the case of  a f i l l  with fixed edges on a frame it is more sensible to include the dependence 
of Tg on the capillary pressure in the second approximation. The order of the system of differential equations is increased in 
this case, so that boundary conditions for the f i l l  thickness can be stated without the construction of boundary layers. In the 

approximation ~, / /a  < <  1 we have the relation [6] 

~ t.,  21 iVh[2) a - Vh | Vh] T,, -- 2(o" -- cW)G + P (hAh + (2.4) 

(the symbol | denotes the tensor product). It is obvious that 

v .  7-, = *--hV(ah) - 2aVe. 
2 

The equation of surfactant diffusion along the interphase boundary is written as follows in the thin-layer approximation: 

~' + V �9 (?v) = 6Ay on F. (2.5) 
Ot 

We assume for simplicity that the exchange of surfactants between the interior volume and the capillary surface is insignificant 
(the surfactants are insoluble). 

For the system of  equations (2.1)-(2.5) we specify the boundary and initial conditions (n is the direction of the normal 
to the boundary OF in the plane of  the f i l l ) :  

ah 
= 0 ,  v = 0 ,  = 0 on OF; ( 2 . 6 )  

0n On 
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h = H , v =  O , y = F  at t = O .  (2.7) 

Equations (2.6) imply that the contact angle, the liquid velocity, and the mass flow of surfactants vanish at the frame. We 

assume for definiteness that H and I" are constant. 

3. NUMERICAL SOLUTION OF THE ONE-DIMENSIONAL PROBLEM 

We consider thcone-dimensional solution h(x, t), v(x, t), 3'(x, t) of problem (2.1)-(2.7). We transform to dimensionless 

variables by the substitutions x ---, Lx, t --> (L/g)l/2t, h --* Hh, v --, (gL)l/2v, and 3' -" I~3' (L is the length of the film in the 

direction of gravity g). As a result, we obtain the problem 

oh o(hr 
+ - -  = O; (3.1) 

St OX 

~ ~ ~h B ~  ( ~  •  
- + , , - =  1 + + ~ [ ~  + , ,  ~ ~ ) .  
at ox a ~ - -~ ox (3.2) 

~+~=~,~. 
ax 2' 

Oh oh 
(0,t) = ~ (~,0 = o, 

o(o,0 = o(1,t) = o, 

~ ( o , 0  = ~ 0 , 0  = o; 

: h(x ,  O) = ~, 
v(x,  O) = o,  
~,(x, o) = 1. 

(3.3) 

(3.4) 

(3.5) 

Here we have introduced the dimemioniess groups 

o H  2 a t  
A -  B =  

~e.z. 3' pe,[-ZL ' 

4v ,~ 
~ o  

C = gl/2L3/2, D =gl/2L3/2 . 
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Fig. 2 

Invoking the specific characteristics of the boundary conditions (3.4), we approximate the solution by t'mite 

trigonometric series: 

K 

h(x. t) = 1 + ~ .  hk(t) cos(~kx), h,(0) = 0. 
k = l  

K 

v(x ,  t) = I ~ sin(~kx), vk(O ) = O, 
k ' I  

K 

~,(x, t) = 1 + ~ ~,,(t) cos(=kx),  ~,,(0) -- o. 

Substituting these functions into Eqs. (3.1)-(3.3), we obtain the system of ordinary differential equations 

duk(t) 

dt  
m m 2 - -  

dhk(t) 
at ~ - = k u , ( O  + H.( t ) .  

1 - ( - 1 )  k 
+ A(:tk)3hk(t)  + B:tlq, k(t ) -- C(:~k)2u,(t) + Vk(t), 

:tk 

drk(t) 
at ~ - - : tkuk( t )  -- D(nk)2~'k(t) + r ,  ct), 

where Hk(t), Vk(t), and rk(t  ) are integral terms that depend nonlinearly on {h l, Vl, ~'1;---; hK, VK, "YK}. 
The system of equations with K = 40 has been integrated numerically by the Runge-Kut ta  method. The calculations 

are carried out for films of water (Fig. 1) and silicone oil (Fig. 2, p = 0.9 g/cm 3, v = 0.05 cm 2, o = 20 g/see 2) having a 

length L = 1 cm and an initial thickness H = 0.01 era. Plotted in the cgs system, the figures show the time rates of change 
of the minimum film thickness (a), the average velocity of the liquid (b), and the surface-tension increment (c), along with the 

thickness profile at t = 0.5 see (d) for c~r/cr = 0.02 (Fig. 1) and c~r/tr = 0.06 (Fig. 2). The dashed curves correspond to 

thinning of the pure film (I '  = 0). The Schmidt number is assumed to be identical everywhere: v/8 = 10. As mentioned above, 
the coefficient of  surface tension ~ does not significantly influence the initial stage of thinning of the film if 8 > >  v. The 

smallest oscillations of  the solution (Fig. 1) appear to be associated with an increase in the error of  its approximation by a finite 
trigonometric series in the case min(h)/H --, 0. 

In conclusion the author wishes to thank V. V. Pukhnaebev for valuable comments. 
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